Mark Scheme (Results)

Summer 2019

Pearson Edexcel International GCSE In Mathematics A (4MA1)
Paper 2H

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.btec.co.uk. Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2019
Publications Code 4MA1_2H_1906_MS
All the material in this publication is copyright
© Pearson Education Ltd 2019

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme.
Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.
- Types of mark
- M marks: method marks
- A marks: accuracy marks
- B marks: unconditional accuracy marks (independent of M marks)
- Abbreviations
- cao - correct answer only
- ft - follow through
- isw - ignore subsequent working
- SC - special case
- oe - or equivalent (and appropriate)
- dep - dependent
- indep - independent
- awrt - answer which rounds to
- eeoo - each error or omission

- No working

If no working is shown then correct answers normally score full marks If no working is shown then incorrect (even though nearly correct) answers score no marks.

- With working

If there is a wrong answer indicated on the answer line always check the working in the body of the script (and on any diagrams), and award any marks appropriate from the mark scheme.
If it is clear from the working that the "correct" answer has been obtained from incorrect working, award 0 marks.
If a candidate misreads a number from the question. Eg. Uses 252 instead of 255; method marks may be awarded provided the question has not been simplified. Examiners should send any instance of a suspected misread to review. If there is a choice of methods shown, then mark the method that gains the lowest marks, unless the answer on the answer line makes clear the method that has been used.
If there is no answer on the answer line then check the working for an obvious answer.

- Ignoring subsequent work

It is appropriate to ignore subsequent work when the additional work does not change the answer in a way that is inappropriate for the question: eg. Incorrect cancelling of a fraction that would otherwise be correct.
It is not appropriate to ignore subsequent work when the additional work essentially makes the answer incorrect eg algebra.
Transcription errors occur when candidates present a correct answer in working, and write it incorrectly on the answer line; mark the correct answer.

- Parts of questions

Unless allowed by the mark scheme, the marks allocated to one part of the question CANNOT be awarded to another.

\section*{| Question Working | Answer | Mark | Notes |
| :--- | :--- | :--- | :--- | :--- |}

Apart from questions 9, 16, 20, 23 (where the mark scheme states otherwise) the correct answer, unless clearly obtained by an incorrect method, should be taken to imply a correct method

1	$\begin{aligned} & 95 \times 8+105 \times 12+115 \times 15+ \\ & 125 \times 10+135 \times 3(=5400) \\ & \text { or } \\ & 760+1260+1725+1250+405 \\ & (=5400) \end{aligned}$			M2 for at least $\mathbf{4}$ correct products added (need not be evaluated) or If not M2 then award M1 for consistent use of value within interval (including end points) for at least $\mathbf{4}$ products which must be added or correct midpoints used for at least $\mathbf{4}$ products and not added
	'5400' \div '48'			M1 dep on at least M1 Allow division by their Σf provided addition or total under column seen
		112.5	4	A1 oe accept 112 or 113 from complete working Accept 112.5 with no working Do not accept 112 or 113 with no working

| $\mathbf{2}$ | | Two pairs of intersecting arcs with
 equal radius centre D and E | | M1 for 2 pairs of arcs that intersect within guidelines or correct
 perpendicular bisector without arcs. |
| :--- | :--- | :--- | :--- | :--- | :--- |

		Correct bisector with arcs	2	A1	
					Total 2 marks

3	(a)	Examples There are no members that are in both A and B No members in common (in A and B) No numbers the same (in A and B) B has even numbers. A has odd numbers except 2 which is not in B Nothing in A is in B oe No overlap A and B don't share any numbers	Correct statement	1	B1 for a statement which indicates correct meanings for intersection and empty set
	(b)		1 and 9	1	B1
	(c)		1, 2, 8, 9	2	B2 for fully correct (B1 for 3 or 4 correct with no more than one addition or a fully correct Venn diagram)

4		$\pi \times 7^{2} \times 20$ (= 3078.76 \ldots) or 980π			M1 for complete method to find volume
			3080	2	A1 for answer in range 3077.2-3080
					Total 2 marks
5	(a)	4×120 (= 480)			M1
		$\begin{aligned} & \text { e.g. } 120 \div 2 \times 5(=300) \text { or } \\ & 120 \times 0.4 \times 7(=336) \text { or } \\ & \left(120-60^{\prime}-48^{\prime}\right) \times 8(=96) \text { or } \\ & 120 \times 0.1 \times 8(=96) \end{aligned}$			M1 for a method to find the income for one of the selling prices
		$\begin{aligned} & \text { e.g. }(120 \div 2 \times 5)+(120 \times 0.4 \times 7)+ \\ & \left(\left(120-{ }^{\prime} 60^{\prime}-‘ 48^{\prime}\right) \times 8\right)(=732) \text { or } \\ & (120 \div 2 \times 5)+(120 \times 0.4 \times 7)+ \\ & (120 \times 0.1 \times 8)(=732) \text { or } \\ & \prime 300^{\prime}+\prime 336^{\prime}+{ }^{\prime} 96^{\prime}(=732) \end{aligned}$			M1 for a complete method to find the total income
		$\begin{aligned} & \text { e.g. } \frac{732^{\prime}-' 480^{\prime}}{\prime 480^{\prime}} \times 100 \text { or } \\ & \prime 252^{\prime} \div 480^{\prime} \times 100 \text { or } \\ & \left(\frac{\prime 732^{\prime}}{\prime 480^{\prime}} \times 100\right)-100 \text { or } 152.5-100 \text { or } \\ & \left(\frac{' 732^{\prime}}{\prime 480^{\prime}}-1\right) \times 100 \text { or } 0.525 \times 100 \end{aligned}$			M1 for a complete method to find the percentage profit
			52.5	5	A1 accept 53
	(b)	$\begin{aligned} & \text { e.g. } 1+0.2(=1.2) \text { or } \\ & 100(\%)+20(\%)(=120(\%)) \text { or } \end{aligned}$			M1

| | | $\frac{15}{120}(=0.125)$ oe | | |
| :--- | :--- | :--- | :--- | :--- | :--- |
| | e.g. $15 \div 1.2$ or
 $15 \div 120 \times 100$ or
 $15 \times 100 \div 120$ | | M1 dep | |
| | | $12.5(0)$ | 3 | A1 accept $(£) 12.5,(£) 12.50 \mathrm{p}, 1250$ p if the $£$ sign is crossed out |
| | | | Total 8 marks | |

6	(a)	$\frac{15}{6}$ or $\frac{6}{15}$ or $\frac{4.2}{6}$ or $\frac{6}{4.2}$ oe 2.5 or 0.4 or 0.7 or $1.4(2857 \ldots . . .)$.		M1 for a correct scale factor, accept ratio notation eg 6:15	
		(b)	$19.5 \div 2.5$ or 19.5×0.4 oe or $4.2 \times \frac{19.5}{(\mathrm{a})}$	10.5	2
			A1 oe		
		7.8	2	A1 oe	

7	$\begin{aligned} & \text { e.g. } 30 \times 26.8(=804) \text { or } \\ & 13 \times 25(=325) \text { or } \\ & (26.8-25) \times 30 \text { or } \\ & 1.8 \times 30 \end{aligned}$			M1 for finding the total marks for the boys or the total test marks
	$\begin{aligned} & \text { e.g. }(30 \times 26.8-13 \times 25) \div(30-13) \\ & (=28.1764 \ldots) \text { or } \\ & \left({ }^{\prime} 804^{\prime}-325^{\prime}\right) \div(30-13)(=28.1764 \ldots) \\ & \text { or } \\ & \left({ }^{\prime} 804^{\prime}-\prime 325^{\prime} \div 17\right)(=28.1764 \ldots) \text { or } \\ & ((26.8-25) \times 30) \div 17+25 \\ & (=28.1764 \ldots) \text { or } \\ & ‘^{\prime} \times 30 \div 17+25(=28.1764 \ldots) \end{aligned}$			M1 for a complete method to find the mean mark for the girls
		28.2	3	A1 accept 28.15-28.2 (accept without working) (Accept 28 from complete working)
				Total 3 mark

| $\mathbf{8}$ | $(x) \times 1000$ or $(x) \div 60$ or
 $(x) \div 60 \div 60$ or
 $(x) \times 1000 \div 60$ oe | | M1 for at least one of $\times 1000$ or $\div 60$ or $\frac{5}{18}$ oe | |
| :--- | :--- | :--- | :--- | :--- | :--- |
| | $x \times \frac{1000}{60 \times 60}$ oe | | | M1 (dep) for a complete correct method |
| | | $\frac{5}{18} x$ | 3 | A1 accept $0.2 \dot{7} x$ or $0.2 \overline{7} \times$ or $\frac{x}{3.6}$ or $\frac{1}{3.6} x$ |

Total 3 marks

11	(a)	$\begin{aligned} & \pm\left(7.7 \times 10^{4}-9.5 \times 10^{3}\right) \text { or } \\ & \pm\left(7.7 \times 10^{4}-0.95 \times 10^{4}\right) \text { or } \\ & \pm(77000-9500) \text { or } \\ & \pm 67500 \text { oe } \\ & \hline \end{aligned}$			M1 for clearly subtracting the correct values
			6.75×10^{4}	2	A1 allow -6.75×10^{4} allow $\pm 6.8 \times 10^{4}$
	(b)	$\begin{aligned} & \left(8.3 \times 10^{3}\right) \times 50(=415000 \text { or } 4.15 \times \\ & \left.10^{5}\right) \text { or } \\ & \left(4.2 \times 10^{4}\right) \div 50\left(=840 \text { or } 8.4 \times 10^{2}\right) \end{aligned}$ or $\left(4.2 \times 10^{4}\right) \div\left(8.3 \times 10^{3}\right)(=5(.060 \ldots))$			M1 for a relevant calculation
			No supported by correct comparabl e figures in the same form	2	A1 for NO and 415000 and 42000 or NO and 4.15×10^{5} NO and 840 and 8300 or NO and 8.4×10^{2} NO and 5(.060...)
	(c)	$\begin{aligned} & 1.15 \times 0.92(=1.058) \text { oe or } 105.8 \\ & \frac{n \times 1.15 \times 0.92}{n} \text { where } n \text { is a } \\ & \text { number or variable } \\ & \text { e.g. } \frac{200 \times 1.15 \times 0.92}{200} \end{aligned}$			M1 condone $x \times 1.15 \times 0.92$ oe
			5.8	2	A1 NB. -5.8 (M1A0) decrease of 5.8% (M1A0)

				Total 6 marks
12	$(E D=) \frac{16.7}{\tan 43}(=17.90855 \ldots)$ or $(C D=) \frac{16.7}{\sin 43}(=24.48686 \ldots)$			M1 for a correct method to find length $C D$ or $E D$ (E is the point on line AD from where a vertical line is drawn downwards from point C) NB. Sine rule may be used
	$(E D=) \frac{16.7}{\tan 43}(=17.90855 \ldots)$ and $(C D=) \frac{16.7}{\sin 43}(=24.48686 \ldots)$			M1 for a correct method to find both $C D$ and $E D$ or use of Pythagoras theorem $\begin{aligned} & (C D=) \sqrt{16.7^{2}+17.90 \ldots .^{12}}(=24.48686 \ldots) \\ & (E D=) \sqrt{24.48 \ldots .^{12}-16.7^{2}}(=17.90855 \ldots) \end{aligned}$ NB. Sine rule must be in the correct form to give the answer
	$\begin{aligned} & 16.7+21.2 \times 2+' 24.5^{\prime}+{ }^{\prime} 17.9^{\prime} \\ & (=101.495 \ldots . .) \end{aligned}$			M1 (dep on M2) complete method with no extra sides
		101	4	A1 accept 101-102
				Total 4 marks

13	(a)		$\begin{aligned} & 7,17,29, \\ & 48,66,80 \\ & \hline \end{aligned}$	1	B1 cao
	(b)				M1 ft from (a) if only one addition error for at least 4 points plotted correctly at end of interval or for all 6 points plotted consistently within each interval in the frequency table at the correct height
			Correct cf graph	2	A1 accept curve or line segments accept curve that is not joined to $(0,0)$
	(c)		17-19	1	B1 ft from a cumulative frequency graph dep on M1 in (b)
	(d)	For correct use 20 and 60 (20.25 and 60.75) indicated (horizontal line or mark) on the cumulative frequency axis and their readings taken from time taken axis e.g. readings of 11-13 and 22-24 indicated on horizontal axis or 23-12			M1 for a complete method to ft from a cumulative frequency graph dep on M1 in (b)
			9-13	2	A1 accept 9-13 ft from a cumulative frequency graph dep on M1 in (b)
					Total 6 marks

14					M2 for $\sqrt{5^{2}+(-12)^{2}} \text { or } \sqrt{(-5)^{2}+12^{2}} \text { or } \sqrt{5^{2}+12^{2}}$ If not M2 then M1 for $\binom{6}{-9}-\binom{1}{3}$ or $\binom{6}{-9}+\binom{-1}{-3}\left(=\binom{5}{-12}\right.$) or or $\binom{1}{3}-\binom{6}{-9} \text { or }\binom{1}{3}+\binom{-6}{9}\left(=\binom{-5}{12}\right.$	
			13	3	A1	
Total 3 marks						

$\mathbf{1 5}$		$y^{2}=\frac{3 x-2}{x+1}$			M1 squaring both sides to get a correct equation
	$x y^{2}+y^{2}=3 x-2$ oe		M1 for multiplying by the denominator and expanding the bracket		
	$y^{2}+2=x\left(3-y^{2}\right)$ oe		M1 for isolating terms in x and factorising the correct expression of the equation		
		$x=\frac{2+y^{2}}{3-y^{2}}$	4	A1 accept $x=\frac{-2-y^{2}}{y^{2}-3}$ oe	Total 4 marks

| 16 | $\frac{4+\sqrt{8}}{\sqrt{2}-1} \times \frac{(\sqrt{2}+1)}{(\sqrt{2}+1)}$
 e,g,
 $\frac{4 \sqrt{2}+4+\sqrt{8} \sqrt{2}+\sqrt{8}}{2-1}$ or
 $\frac{4 \sqrt{2}+4+4+\sqrt{8}}{2-1}$ or
 $\frac{4 \sqrt{2}+4+\sqrt{16}+\sqrt{8}}{2-1}$ or
 $=4 \sqrt{2}+4+4+\sqrt{8}$ oe | M1 for rationalising the denominator by multiplying numerator
 and denominator by $\sqrt{2}+1($ or $-\sqrt{2}-1)$
 condone missing brackets |
| :--- | :--- | :--- | :--- | :--- |

17	(a)	$y=k x^{3}$ or $k y=x^{3}$			M1 (NB. Not for $y=x^{3}$) Constant of proportionality must be a symbol such as k	M2 for $20 h=k \times h^{3} \text { oe }$
		$20 h=k \times h^{3}$ oe			M1 substitution of x and y into a correct formula	
			$y=\frac{20 x^{3}}{h^{2}}$	3	A1 for $y=\frac{20 x^{3}}{h^{2}}$ oe Award 3 marks if answer is $y=k x^{3}$ and $k=\frac{20}{h^{2}}$ oe is seen in part (a) or in part (b)	
	(b)	$\sqrt[3]{67.5 h \div \cdot \frac{20}{h^{2}}}$ ' oe			M1 ft, dep on at least M1 in part (a), complete method to find x	
			$1.5 h$	2	A1 accept $\frac{3}{2} h$ or $\frac{3 h}{2}$	
						Total 5 marks

20	$x^{2}-3 x(9-x)+2(9-x)^{2}(=$ 0)	$\begin{aligned} & (9-y)^{2}-3 y(9-y)+2 y^{2}(= \\ & 0) \end{aligned}$			M1 substitution of linear equation into quadratic
	e.g. $6 x^{2}-63 x+162(=0)$ or $2 x^{2}-21 x+54(=0)$ allow $2 x^{2}-21 x=-54$ oe	$\text { e.g. } 6 y^{2}-45 y+81(=0)$ or $2 y^{2}-15 y+27(=0)$ allow $2 y^{2}-15 y=-27$ oe			A1 (dep on M1) writing the correct quadratic expression in form $a x^{2}+b x+$ $c(=0)$ allow $a x^{2}+b x=c$
	$\begin{aligned} & \text { e.g. }(2 x-9)(x-6)(=0) \\ & x=\frac{-(-21) \pm \sqrt{(-21)^{2}-4 \times 2 \times 54}}{2 \times 2} \\ & \text { e.g. } \\ & 2\left(\left(x-\frac{21}{4}\right)^{2}-\left(\frac{21}{4}\right)^{2}\right)=-54 \end{aligned}$	$\begin{aligned} & \text { e.g. }(2 y-9)(y-3)(=0) \\ & y=\frac{-(-15) \pm \sqrt{(-15)^{2}-4 \times 2 \times 27}}{2 \times 2} \end{aligned}$ e.g. $2\left(\left(x-\frac{15}{4}\right)^{2}-\left(\frac{15}{4}\right)^{2}\right)=-27$			M1 (dep on M1) for a complete method to solve their 3-term quadratic equation (allow one sign error and some simplification - allow as far as $\left.\frac{21 \pm \sqrt{441-432}}{4}\right)$
	$x=4.5$ and $x=6$	$y=4.5$ and $y=3$			A1 (dep on M1) both x-values or both y-values
			$(4.5,4.5)$ and $(6,3)$	5	A1 (dep on M1) oe Must be paired correctly
					Total 5 marks

| 20
 Alt | $(x-y)(x-2 y)(=0)$ | | | M1 for a method to factorise \mathbf{C} |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| | $(x-(9-x))(x-2(9-x))(=0)$ | $(9-y-y)(9-y-2 y)(=0)$ | | A1 (dep M1) substitution of \mathbf{L} into their
 factorised \mathbf{C} |
| | $x=4.5$ and $x=6$ | $y=4.5$ and $y=3$ | M1 (dep on M1) | |
| | | $(9-2 y)(9-3 y)(=0)$ oe
 and
 $(6,3)$ | A1 (dep on M1) both x-values or both
 y-values | |

21	e.g. $\begin{aligned} & (A C=) \sqrt{(4 x)^{2}+(2 x)^{2}} \quad(=\sqrt{20} x) \text { or } \\ & (A C=) \sqrt{(4)^{2}+(2)^{2}} \quad(=\sqrt{20}) \text { or } \\ & (A F=) \sqrt{(4)^{2}+(2)^{2}+(3)^{2}} \quad(=\sqrt{29}) \text { or } \\ & (A F=) \sqrt{(\sqrt{20})^{2}+(3)^{2}} \quad(=\sqrt{29}) \text { or } \end{aligned}$			M1 for a method to find an expression for length AC or length AF with or without x or x can represent any number e.g. $A B: B C: C F=2: 1: 1.5$ $A C^{2}=\sqrt{2^{2}+1^{2}}(=\sqrt{5})$
	e.g. $\begin{aligned} & (C A F=) \tan ^{-1}\left(\frac{3 x}{\prime \sqrt{20} x^{\prime}}\right)(=33.854 \ldots) \text { or } \\ & \text { (CAF }=) \tan ^{-1}\left(\frac{3}{\prime \sqrt{20}}\right)(=33.854 \ldots) \text { or } \\ & (C A F=) \cos ^{-1}\left(\frac{1 \sqrt{20^{\prime}}}{\prime \sqrt{29^{\prime}}}\right)(=33.854 \ldots) \text { or } \\ & (C A F=) \sin ^{-1}\left(\frac{3}{\prime \sqrt{29^{\prime}}}\right)(=33.854 \ldots) \end{aligned}$			M1 for a complete method to find angle CAF using length $A C$ or for a complete method to find angle CAF using length $A F$ with or without x or x can represent any number $A B: B C: C F=2: 1: 1.5$ $(C A F=) \tan ^{-1}\left(\frac{1.5}{\prime \sqrt{5}}\right)(=33.854 \ldots)$
		33.9°	3	A1 answers in the range 33.85-33.9
				Total 3 marks

| 22 | $x(2 x+5)(3 x-1)$ or $(2 x+5)\left(3 x^{2}-x\right)$
 or $(2 x+5)(2 x-5)$ oe | | M1 for a correct factorisation of the
 numerator into 2 or 3 factors where one of the factors must be
 $(2 x+5)$ |
| :---: | :--- | :--- | :--- | :--- |
| | $x(2 x+5)(3 x-1)$ or $(2 x+5)\left(3 x^{2}-x\right)$
 and $(2 x+5)(2 x-5)$ oe | | or
 denominator into 2 brackets where one of the factors must be
 $(2 x+5)$ |

$\begin{aligned} & \hline 23 \\ & \text { Alt } \end{aligned}$	RG and GR method			
	$\frac{3}{x+3} \times \frac{x}{x+2}$ or $\frac{3}{x+3} \times \frac{2}{x+2}$ or $\frac{x}{x+3} \times \frac{3}{x+2}$ $\frac{x}{x+3} \times \frac{x-1}{x+2}$			M1 for one correct product
	$\begin{array}{l\|l} \frac{3}{x+3} \times \frac{x}{x+2}+ & \frac{3}{x+3} \times \frac{2}{x+2}+ \\ \frac{x}{x+3} \times \frac{3}{x+2}=\frac{12}{35} \text { or } & \frac{x}{x+3} \times \frac{x-1}{x+2}=\frac{23}{35} \\ 2 \times \frac{3}{x+3} \times \frac{x}{x+2}=\frac{12}{35} \text { oe } & \end{array}$			M1 dep on M1 for a correct equation
	e.g. $2 x^{2}-25 x+12(=0)$ or allow $2 x^{2}-25 x=-12$			A1 (dep on M2) writing the correct quadratic expression in form $a x^{2}+b x+c$ (= 0) allow $a x^{2}+b x=c$
	$\begin{aligned} & \text { e.g. }(2 x-1)(x-12)=0 \\ & \text { e.g. } x=\frac{-(-25) \pm \sqrt{(-25)^{2}-4 \times 2 \times 12}}{2 \times 2} \\ & \text { e.g. } 2\left(\left(x-\frac{25}{4}\right)^{2}-\left(\frac{25}{4}\right)^{2}\right)=-12 \end{aligned}$			M1 (dep on A1) for a complete method to solve the 3-term quadratic equation (allow one sign error and some simplification - allow as far as $\frac{25 \pm \sqrt{625-96}}{4}$) or can be implied by answers of 12 (and $\frac{1}{2}$)
		12	5	A1 (dep on A1) cao

			Total 5 marks

24	(a)		13	1	B1
	(b)	$\begin{aligned} & y=2\left(x^{2}-10 x\right)+9 \text { or } \\ & y=2\left(x^{2}-10 x+\frac{9}{2}\right) \end{aligned}$			M1 for a correct equation for a first step in order to complete the square
		$\begin{aligned} & \begin{array}{l} \text { e.g. } \\ y=2\left((x-5)^{2}-5^{2}\right)+9 \text { or } \\ y=2\left((x-5)^{2}-5^{2}+\frac{9}{2}\right) \text { or } \\ y=2(x-5)^{2}-41 \text { oe } \end{array} \end{aligned}$			M1 dep
		$(x-5)^{2}=\frac{y+41}{2} \text { oe }$			M1
			$5+\sqrt{\frac{x+41}{2}}$	4	A1 oe
					Total 5 marks
Note: Allow candidates to swap x and y when finding the inverse					

$\begin{aligned} & 24 \\ & \text { Alt } \end{aligned}$	(a)		13	1	B1
	(b)	$2 x^{2}-20 x+(9-y)=0$			M1 for a correct first step
		$\begin{aligned} & x=\frac{20 \pm \sqrt{400-8(9-y)}}{4} \text { or } \\ & x=\frac{20+\sqrt{400-8(9-y)}}{4} \end{aligned}$			M1 dep
		$x=5 \pm \sqrt{\frac{41+y}{2}} \mathrm{oe}$			M1
			$5+\sqrt{\frac{x+41}{2}}$	4	A1 oe
					Total 5 marks
Note: Allow candidates to swap x and y when finding the inverse					

24	(a)		13	1	B1
	(b)	$2 x^{2}-20 x+(9-y)(=0)$			M1 for a correct first step
		$\begin{aligned} & \text { e.g. } \\ & 2\left((x-5)^{2}-5^{2}\right)+9-y(=0) \text { or } \\ & 2\left((x-5)^{2}-5^{2}+\frac{9}{2}\right)-y(=0) \text { or } \\ & 2(x-5)^{2}-41-y(=0) \end{aligned}$			M1 dep
		$(x-5)^{2}=\frac{y+41}{2} \text { oe }$			M1
			$5+\sqrt{\frac{x+41}{2}}$	4	A1 oe
					Total 5 marks
Note: Allow candidates to swap x and y when finding the inverse					

